Math 31 - Homework 5

Due Friday, August 3

Easy

1. Let $G = \langle a \rangle$ be a cyclic group of order n. You showed on a previous homework that if $m \mid n$, then G has a unique subgroup of order m, namely

$$N = \langle a^{n/m} \rangle.$$

Moreover, $N \triangleleft G$ since G is abelian.

- (a) How many cosets of N are there in G? Find them.
- (b) Given two cosets of N, what is their product? Verify that each coset is a power of the coset Na.
- (c) Conclude that G/N is a cyclic group. What is its order?

2. [Herstein, Section 2.6 #2] Recall that \mathbb{R}^{\times} is the group of nonzero real numbers (under multiplication), and let $N = \{-1, 1\}$. Show that N is a normal subgroup of \mathbb{R}^{\times} , and that \mathbb{R}^{\times}/N is isomorphic to the group of positive real numbers under multiplication. [Hint: Use the First Homomorphism Theorem.]

3. [Herstein, Section 3.2 #2] Find the cycle decomposition and order of each of the following permutations.

(a) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 6 & 9 & 8 & 5 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4 \end{pmatrix}$

4. [Herstein, Section 3.3 # 1] Determine whether each permutation is even or odd.

(a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 5 & 1 & 3 & 7 & 8 & 9 & 6 \end{pmatrix}$$

(b) $(1 & 2 & 3 & 4 & 5 & 6)(7 & 8 & 9)$
(c) $(1 & 2 & 3 & 4 & 5 & 6)(1 & 2 & 3 & 4 & 5 & 7)$
(d) $(1 & 2)(1 & 2 & 3)(4 & 5)(5 & 6 & 8)(1 & 7 & 9)$

5. [Herstein, Section 3.3 # 5] Suppose you are told that the permutation

in S_9 , where the images of 4 and 5 have been lost, is an even permutation. What must the images of 4 and 5 be?

Medium

6. Prove that if G is abelian and $N \leq G$, then G/N is abelian. [Hint: You may want to use a result from the last homework assignment.]

7. If G is a group and $M \triangleleft G$, $N \triangleleft G$, prove that $M \cap N \triangleleft G$. [You proved on an earlier assignment that $M \cap N$ is a subgroup of G, so you only need to prove that it is normal.]

8. Let G be a group. Recall from a previous homework that the **center** of G is the set Z(G) defined by

$$Z(G) = \{ x \in G : xa = ax \text{ for all } a \in G \}.$$

You proved that Z(G) is a subgroup of G.

- (a) Prove that $Z(G) \triangleleft G$.
- (b) If G/Z(G) is cyclic, prove that G is abelian.
- **9.** Let G be a group and $H \leq G$. If [G:H] = 2, prove that H is normal in G.

Hard

10. Let G be a group, and recall that Aut(G) is the set of all automorphisms of G. You proved on the last homework that Aut(G) forms a group under composition.

(a) Given $g \in G$, define a function $\theta_q : G \to G$ by

$$\theta_q(a) = gag^{-1}$$

for all $a \in G$. Show that $\theta_g \in Aut(G)$. (Such an automorphism is called an **inner automorphism**.)

- (b) Let Inn(G) denote the set of all inner automorphisms of G. Then $\text{Inn}(G) \subset \text{Aut}(G)$ by part (a). Show that Inn(G) is actually a subgroup of Aut(G).
- (c) Prove that Inn(G) is a normal subgroup.